Deep-learning electronic-structure calculation of magnetic superstructures

Abstract

Ab initio study of magnetic superstructures (e.g., magnetic skyrmion) is indispensable to the research of novel materials but bottlenecked by its formidable computational cost. For solving the bottleneck problem, we develop a deep equivariant neural network method (named xDeepH) to represent density functional theory Hamiltonian HDFTH_\text{DFT} as a function of atomic and magnetic structures and apply neural networks for efficient electronic structure calculation. Intelligence of neural networks is optimized by incorporating a priori knowledge about the important locality and symmetry properties into the method. Particularly, we design a neural-network architecture fully preserving all equivalent requirements on HDFTH_\text{DFT} by the Euclidean and time-reversal symmetries (E(3)×{I,T}E(3) \times \{I, T\}), which is essential to improve method performance. High accuracy (sub-meV error) and good transferability of xDeepH are shown by systematic experiments on nanotube, spin-spiral, and Moir\'{e} magnets, and the capability of studying magnetic skyrmion is also demonstrated. The method could find promising applications in magnetic materials research and inspire development of deep-learning ab initio methods

    Similar works

    Full text

    thumbnail-image

    Available Versions