Investigation of the physiological response of cold-adapted microorganisms to extreme environmental stress factors.

Abstract

Exploring the limits of life is one of the objectives for better understanding how organisms have arisen on Earth, how they tolerate extreme conditions and how they might survive on other planets or moons. These investigations could help with understanding which Earth microorganisms could survive on other celestial bodies, such as the icy Moons: Europa (Jupiter) and Enceladus (Saturn). Furthermore, it might help with indicating how life could have developed on Earth or on the icy Moons of the Solar system. This project focuses on the insights from prokaryotic, eukaryotic and archaea organisms which can tolerate the simulated subsurface ocean environment of Europa and Enceladus. The moons have been speculated to have subsurface oceans which are heated by tidal movements or hydrothermal vents. These combined factors could create an environment suitable for life. Furthermore, the mechanism of radiation, desiccation and temperature survival could help us understand whether the organisms could survive a hitchhike on spacecraft surfaces travelling to the moons. During space exploration it is essential to avoid the contamination of planets and moons of astrobiological interest by microorganisms from Earth. [...

    Similar works