Tailored Presolve Techniques in Branch-and-Bound Method for Fast Mixed-Integer Optimal Control Applications

Abstract

Mixed-integer model predictive control (MI-MPC) can be a powerful tool for modeling hybrid control systems. In case of a linear-quadratic objective in combination with linear or piecewise-linear system dynamics and inequality constraints, MI-MPC needs to solve a mixed-integer quadratic program (MIQP) at each sampling time step. This paper presents a collection of block-sparse presolve techniques to efficiently remove decision variables, and to remove or tighten inequality constraints, tailored to mixed-integer optimal control problems (MIOCP). In addition, we describe a novel heuristic approach based on an iterative presolve algorithm to compute a feasible but possibly suboptimal MIQP solution. We present benchmarking results for a C code implementation of the proposed BB-ASIPM solver, including a branch-and-bound (B&B) method with the proposed tailored presolve techniques and an active-set based interior point method (ASIPM), compared against multiple state-of-the-art MIQP solvers on a case study of motion planning with obstacle avoidance constraints. Finally, we demonstrate the computational performance of the BB-ASIPM solver on the dSPACE Scalexio real-time embedded hardware using a second case study of stabilization for an underactuated cart-pole with soft contacts.Comment: 27 pages, 7 figures, 2 tables, submitted to journal of Optimal Control Applications and Method

    Similar works

    Full text

    thumbnail-image

    Available Versions