Existing GAN inversion methods work brilliantly for high-quality image
reconstruction and editing while struggling with finding the corresponding
high-quality images for low-quality inputs. Therefore, recent works are
directed toward leveraging the supervision of paired high-quality and
low-quality images for inversion. However, these methods are infeasible in
real-world scenarios and further hinder performance improvement. In this paper,
we resolve this problem by introducing Unsupervised Domain Adaptation (UDA)
into the Inversion process, namely UDA-Inversion, for both high-quality and
low-quality image inversion and editing. Particularly, UDA-Inversion first
regards the high-quality and low-quality images as the source domain and
unlabeled target domain, respectively. Then, a discrepancy function is
presented to measure the difference between two domains, after which we
minimize the source error and the discrepancy between the distributions of two
domains in the latent space to obtain accurate latent codes for low-quality
images. Without direct supervision, constructive representations of
high-quality images can be spontaneously learned and transformed into
low-quality images based on unsupervised domain adaptation. Experimental
results indicate that UDA-inversion is the first that achieves a comparable
level of performance with supervised methods in low-quality images across
multiple domain datasets. We hope this work provides a unique inspiration for
latent embedding distributions in image process tasks