Current driven due to localized electron power deposition in DIII-D

Abstract

Due to spatial localization of electron cyclotron wave injection in DIII-D, electrons heated in an off-axis region must toroidally transit the tokamak 25--50 times before re-entering the heating region. This distance is of the order of the mean free path. The effect of such RF localization is simulated with a time-dependent Fokker-Planck code which is 2D-in-velocity, 1D-in-space-along-B, and periodic in space. An effective parallel electric field arises to maintain continuity of the driven current. Somewhat surprisingly, the localized current drive efficiency remains equal to that for a uniform medium

    Similar works