Surety theoretics: The forest or the trees?

Abstract

Periodically one needs to re-examine the objectives and the efforts associated with a field of study. In the case of surety which comprises, safety, security and reliability one needs to be sure that theoretical efforts support the needs of systems and design engineers in satisfying stakeholder requirements. The current focus in the surety areas does not appear to address the theoretical foundations needed by the systems engineer. Examination of papers and abstracts demonstrate significant effort along the lines of thermal hydraulics, chemistry, structural response, control theory, etc. which are analytical disciplines which provide support for a surety theoretic but do not constitute a theoretic. The representations currently employed, fault trees etc., define static representations of a system, not the dynamic representation characteristic of response in abnormal, hostile or under degrading conditions. Current methodologies would require a semi-infinite set of scenarios to be examined before a system could be certified as satisfying a surety requirement. The elements that are required of a surety theoretic must include: (1) a dynamic representation of the system; (2) the ability to automatically identify terminal states of the system; and (3) determine the probabilities of specified terminal states under dynamic conditions. This paper examines the requirements of a surety theoretic that will support the efforts of the design and development engineer. Speculations then follow on technologies that might provide the theoretical and support foundations needed by the systems engineering community to form a robust surety analysis and design environment

    Similar works

    Full text

    thumbnail-image