Geochemical and stable isotope variations in baseflow from an urbanized watershed: White Rock Creek, Dallas, Texas

Abstract

Public concerns about surface water quality and its impact on health issues have put a premium on the ability to predict surface and groundwater quality in urban areas. The movement of toxins and nutrients in urban areas is largely controlled by interactions with soil and aquifer minerals along hydrologic pathways. Despite progress in theoretical modeling of the effects of these interactions on water chemistry, it is presently impossible to predict overall trends in urban water quality. Determining the controls on stream water chemistry is problematic due to the interplay between different hydrologic reservoirs which cannot be easily observed or measured. Natural tracers, such as dissolved ions and isotopes, provide an indirect method for observing subsurface interactions and are useful for time series analysis of stream water composition. Ionic species are generally nonconservative components because of chemical reactions and are thus useful for discerning the overall discharge chemistry affected by the relationship

    Similar works