Non-Destructive Inter-Level Dielectric via in-Line Process Monitoring by Atomic Force Microscopy

Abstract

A new application using atomic force microscopy (AFM) for in-line process control monitoring (PCM) of an interlevel dielectric via etching step is reported. The AFM with its near atomic-level resolution is capable of nondestructively measuring whether micron-sized vias have been etched to completion. Etch completion is determined by comparing the AFM measured etch depth of adjacent via holes through {approximately}4000 {Angstrom} thick Si{sub 3}N{sub 4} over Au-based ohmic and W gate metallizations. Due to etch selectivity, of the SF{sub 6}/0{sub 2} reactive ion etch (RIIE) generated plasma, the ohmic metal acts as an etch stop whereas the W-based refractory gate continues to etch. For etch times beyond endpoint in the range of 20 to 50%, the AFM measured via etch depth differences is 250 to 400 {Angstrom} when comparing via depths over ohmic metal and W gate metal. This etch depth difference is a specific marker for etch completion and it is measured nondestructively at a point in the process where rework is still a feasible option

    Similar works