Determination of mixed proton/neutron fluences in the LANSCE irradiation environment

Abstract

In support of the Accelerator Production of Tritium (APT) program, several materials were exposed to a high-energy proton and spallation neutron environments. Large differences in mechanical property changes in this environment are expected compared to the typical fusion or fission systems. To make proper dose correlations, it is important to accurately quantify the fluences. Activation foils consisting of a stack of disks of Co, Ni, Fe, Al, Nb and Cu were irradiated concurrent with mechanical testing samples in the Los Alamos Spallation Radiation Effects Facility (LASREF) at the Los Alamos Neutron Science Center (LANSCE) facility. The irradiation consisted of an 800 MeV, 1 mA proton beam and a W target in the beam provided a source of spallation neutrons. The maximum proton fluence was around 3 {times} 10{sup 21} p/cm{sup 2} and the maximum neutron fluence approximately 3 {times} 10{sup 20} n/cm{sup 2}. After irradiation, the foils were withdrawn and the radioactive isotopes analyzed using gamma spectroscopy. From initial estimates for the fluences and spectra derived from the Los Alamos High-Energy Transport (LAHET) Code System (LCS), comparisons to the measured levels of activation products were made. The Na-22 activation products in the Al foils were measured from different regions of the target in order to profile the spatial levels of the fluences. These tests gave empirical confirmation of the proton and neutron fluences of the irradiated samples throughout the target region

    Similar works

    Full text

    thumbnail-image