Recursive estimation for the tracking of radioactive sources

Abstract

This paper describes a recursive estimation algorithm used for tracking the physical location of radioactive sources in real-time as they are moved around in a facility. The algorithm is related to a nonlinear least squares estimation that minimizes the change in the source location and the deviation between measurements and model predictions simultaneously. The measurements used to estimate position consist of four count rates reported by four different gamma ray detectors. There is an uncertainty in the source location due to the large variance of the detected count rate. This work represents part of a suite of tools which will partially automate security and safety assessments, allow some assessments to be done remotely, and provide additional sensor modalities with which to make assessments

    Similar works