Impurity effects on bonding charge in Ni{sub 3}Al

Abstract

We have studied the effect of B and H on the charge density in Ni{sub 3}Al employing first-principles electronic structure calculations based on the FLMTO method. The changes in the electronic structure induced by B result from hybridization of d states of the nearest neighbor Ni atoms with adjacent B-{ital PP} states. Thus, boron prefers to occupy Ni-rich octahedral interstices [X(7)]. Boron greatly enhances the intraplanar metallic bonding between the Ni atoms, enhances the interplanar bonding between the NiAl layers in [001] direction, and reduces the bonding-charge directionality near the Ni(3) atoms. It is concluded that B acts to increase crystal cohesion. Hydrogen enhances the bonding-charge directionality near Ni(3) atoms and has virtually no interstitial charge enhancement, suggesting that H does not promote local cohesion. When both B and H are present, the dominant changes in the electronic structure induced by B and H seems to have little effect

    Similar works

    Full text

    thumbnail-image