Geostatistics and cost-effective environmental remediation

Abstract

Numerous sites within the U.S. Department of Energy (DOE) complex have been contaminated with various radioactive and hazardous materials by defense-related activities during the post-World War II era. The perception is that characterization and remediation of these contaminated sites will be too costly using currently available technology. Consequently, the DOE Office of Technology Development has funded development of a number of alternative processes for characterizing and remediating these sites. The former Feed-Materials Processing Center near Fernald, Ohio (USA), was selected for demonstrating several innovative technologies. Contamination at the Fernald site consists principally of particulate uranium and derivative compounds in surficial soil. A field-characterization demonstration program was conducted during the summer of 1994 specifically to demonstrate the relative economic performance of seven proposed advanced-characterization tools for measuring uranium activity of in-situ soils. These innovative measurement technologies are principally radiation detectors of varied designs. Four industry-standard measurement technologies, including conventional, regulatory-agency-accepted soil sampling followed by laboratory geochemical analysis, were also demonstrated during the program for comparative purposes. A risk-based economic-decision model has been used to evaluate the performance of these alternative characterization tools. The decision model computes the dollar value of an objective function for each of the different characterization approaches. The methodology not only can assist site operators to choose among engineering alternatives for site characterization and/or remediation, but also can provide an objective and quantitative basis for decisions with respect to the completeness of site characterization

    Similar works