This paper describes an algorithm for determining the optimal placement of a robotic manipulator within a workcell for minimum time coordinated motion. The algorithm uses a simple principle of coordinated motion to estimate the time of a joint interpolated motion. Specifically, the coordinated motion profile is limited by the slowest axis. Two and six degree of freedom (DOF) examples are presented. In experimental tests on a FANUC S-800 arm, the optimal placement of the robot can improve cycle time of a robotic operation by as much as 25%. In high volume processes where the robot motion is currently the limiting factor, this increased throughput can result in substantial cost savings