Understanding polaritonic chemistry from ab initio quantum electrodynamics

Abstract

In this review we present the theoretical foundations and first principles frameworks to describe quantum matter within quantum electrodynamics (QED) in the low-energy regime. Having a rigorous and fully quantized description of interacting photons, electrons and nuclei/ions, from weak to strong light-matter coupling regimes, is pivotal for a detailed understanding of the emerging fields of polaritonic chemistry and cavity materials engineering. The use of rigorous first principles avoids ambiguities and problems stemming from using approximate models based on phenomenological descriptions of light, matter and their interactions. By starting from fundamental physical and mathematical principles, we first review in great detail non-relativistic QED, which allows to study polaritonic systems non-perturbatively by solving a Schrödinger-type equation. The resulting Pauli-Fierz quantum field theory serves as a cornerstone for the development of computational methods, such as quantum-electrodynamical density functional theory, QED coupled cluster or cavity Born-Oppenheimer molecular dynamics. These methods treat light and matter on equal footing and have the same level of accuracy and reliability as established methods of computational chemistry and electronic structure theory. After an overview of the key-ideas behind those novel ab initio QED methods, we explain their benefits for a better understanding of photon-induced changes of chemical properties and reactions. Based on results obtained by ab initio QED methods we identify the open theoretical questions and how a so far missing mechanistic understanding of polaritonic chemistry can be established. We finally give an outlook on future directions within polaritonic chemistry and first principles QED and address the open questions that need to be solved in the next years both from a theoretical as well as experimental viewpoint

    Similar works