Nonlinear least squares and regularization

Abstract

A problem frequently encountered in the earth sciences requires deducing physical parameters of the system of interest from measurements of some other (hopefully) closely related physical quantity. The obvious example in seismology (either surface reflection seismology or crosswell seismic tomography) is the use of measurements of sound wave traveltime to deduce wavespeed distribution in the earth and then subsequently to infer the values of other physical quantities of interest such as porosity, water or oil saturation, permeability, etc. The author presents and discusses some general ideas about iterative nonlinear output least-squares methods. The main result is that, if it is possible to do forward modeling on a physical problem in a way that permits the output (i.e., the predicted values of some physical parameter that could be measured) and the first derivative of the same output with respect to the model parameters (whatever they may be) to be calculated numerically, then it is possible (at least in principle) to solve the inverse problem using the method described. The main trick learned in this analysis comes from the realization that the steps in the model updates may have to be quite small in some cases for the implied guarantees of convergence to be realized

    Similar works