Enhancement of spin mixing conductance in La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub>/LaNiO<sub>3</sub>/SrRuO<sub>3</sub> heterostructures

Abstract

Spin pumping and the effective spin-mixing conductance in heterostructures based on magnetic oxide trilayers composed of La0.7Sr0.3MnO3 (LSMO), LaNiO3 (LNO), and SrRuO3 (SRO) are investigated. The heterostructures serve as a model system for an estimation of the effective spin-mixing conductance at the different interfaces. The results show that by introducing a LNO interlayer between LSMO and SRO, the total effective spin-mixing conductance increases due to the much more favorable interface of LSMO/LNO with respect to the LSMO/SRO interface. Nevertheless, the spin current into the SRO does not decrease because of the spin diffusion length of λLNO ≈ 3.2nm in the LNO. This value is two times higher than that of SRO. The results show the potential of using oxide interfaces to tune the effective spin-mixing conductance in heterostructures and to bring novel functionalities into spintronics by implementing complex oxides

    Similar works