Adaptive Object Representation with Hierarchically-Distributed Memory Sites

Abstract

Theories of object recognition often assume that only one representation scheme is used within one visual-processing pathway. Versatility of the visual system comes from having multiple visual-processing pathways, each specialized in a different category of objects. We propose a theoretically simpler alternative, capable of explaining the same set of data and more. A single primary visual-processing pathway, loosely modular, is assumed. Memory modules are attached to sites along this pathway. Object-identity decision is made independently at each site. A site's response time is a monotonic-decreasing function of its confidence regarding its decision. An observer's response is the first-arriving response from any site. The effective representation(s) of such a system, determined empirically, can appear to be specialized for different tasks and stimuli, consistent with recent clinical and functional-imaging findings. This, however, merely reflects a decision being made at its appropriate level of abstraction. The system itself is intrinsically flexible and adaptive

    Similar works

    Full text

    thumbnail-image

    Available Versions