A comparison of LBW and GTAW processes in miniature closure welds

Abstract

When small electronic components with glass-to-metal seals are closure welded, residual stresses developed in the glass are of concern. If these stresses exceed allowable tensile levels` the resulting weld-induced seal failure may cause the entire component to be scrapped or reworked at substantial cost. Conventional wisdom says the best welding process for these applications is that which provides the least heat input, and that Laser Beam Welding (LBW) provides less heat input than Gas Tungsten Arc Welding. (GTAW); however, other concerns such as weld fit-up, part variability, and material weldability can modify the final choice of a welding process. In this paper we compare the characteristic levels of heat input and the residual stresses generated in the glass seals for the two processes (as calculated by 3D Finite Element Analysis) as a function of heat input and travel speed, and contrast some of the other manufacturing decisions that must be made to choose a production process. The geometry chosen is a standing edge corner weld in a cylindrical container about 20 mm diameter by 35 mm tall. Four metal pins are glassed into the part lid. The stresses calculated to result from continuous wave C0{sub 2} LBW are compared with those that result from GTAW. The total energy required by the laser weld is significantly less than for the equivalent size GTA weld. The energy input required for a given size weld is inversely proportional to the travel speed, but approaches a saturation level as the travel speed increases. LBW travel speeds ranging from 10 mm/sec to 50 mm/sec were examined

    Similar works