Safety and environmental advantages of using tritium-lean targets for inertial fusion

Abstract

While traditional inertial fusion energy target designs typically use equimolar portions of deuterium and tritium and have areal densities ({rho}r) of {approx} 3 g/cm{sup 2}, significant safety and environmental (S and E) advantages may be obtained through the use of high-density ({rho}r {approx} 10 g/cm{sup 2}) targets with tritium components as low as 0.5%. Such targets would absorb much of the neutron energy within the target and could be self-sufficient from a tritium breeding point of view. Tritium self-sufficiency within the target would free target chamber designers from the need to use lithium-bearing blanket materials, while low inventories within each target would translate into low inventories in target fabrication facilities. Absorption of much of the neutron energy within the target, the extremely low tritium inventories, and the greatly moderated neutron spectrum, make ''tritium-lean'' targets appear quite attractive from an S and E perspective

    Similar works