research

Unique continuation for the magnetic Schrödinger equation

Abstract

The unique‐continuation property from sets of positive measure is here proven for the many‐body magnetic Schrödinger equation. This property guarantees that if a solution of the Schrödinger equation vanishes on a set of positive measure, then it is identically zero. We explicitly consider potentials written as sums of either one‐body or two‐body functions, typical for Hamiltonians in many‐body quantum mechanics. As a special case, we are able to treat atomic and molecular Hamiltonians. The unique‐continuation property plays an important role in density‐functional theories, which underpins its relevance in quantum chemistry

    Similar works