CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Extraordinarily High Conductivity of Stretchable Fibers of Polyurethane and Silver Nanoflowers
Authors
S. Cho
M. Choi
+3 more
B. Kang
Rujun Ma
Seunghyun Baik
Publication date
1 October 2018
Publisher
AMER CHEMICAL SOC
Abstract
Stretchable conductive composites have received considerable attention recently, and they should have high conductivity and mechanical strength. Here we report highly conductive stretchable fibers synthesized by the scalable wet spinning process using flower-shaped silver nanoparticles with nanodisc-shaped petals (Ag nanoflowers) and polyurethane. An extraordinarily high conductivity (41245 S cm-1) was obtained by Ag nanoflowers, which is 2 orders of magnitude greater than that of fibers synthesized using spherical Ag nanoparticles. This was due to the enhanced surface area and vigorous coalescence of nanodisc-shaped petals during the curing process. There was a trade-off relationship between conductivity and stretchability, and the maximum rupture strain was 776%. An analytical model revealed that the enhanced adhesion between Ag nanoflowers and polyurethane provided a high Young's modulus (731.5 MPa) and ultimate strength (39.6 MPa) of the fibers. The fibers exhibited an elastic property after prestretching, and the resistance change of weft-knitted fabric was negligible up to 200% strain. The fibers with extraordinarily high conductivity, stretchability, and mechanical strength may be useful for wearable electronics applications. © 2015 American Chemical Society253
Similar works
Full text
Available Versions
IBS Publications Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:pr.ibs.re.kr:8788114/2278
Last time updated on 06/02/2020