International Society of Biomechanics in Sports (ISBS)
Abstract
The purpose of this study was to investigate the relationship between lumbar vertebral microfracture and fatigue loading on young human spine under physiological cyclic compression loads. Thirty-three thoracolumbar vertebrae (T12 to L4) were obtained from 7 adult Chinese male cadavers. They were randomly divided into 5 groups. Cyclical compression was performed for 20,000 cycles with 2 Hz. Load magnitude was determined respectively as 10%, 20% and 30% of the ultimate compressive load. Four cylindrical sections were obtained from each vertebra and the cross-sectional slides were made. The histomorphometry was used to determine microfracture densitiy and distribution. No fracture was detected in the radiographs of groups III, IV and V after fatigue load. Microfracture density in the cyclic compression group increased from 0.46 #/mm2 in Group III to 0.66 #/mm2 (Group IV) and 0.94 #/mm2 (Group V) under different loading levels (). These results provide evidence for the existence of microfractures caused by fatigue loads that are undetectable by X-ray