Predictive analytics framework for electronic health records with machine learning advancements : optimising hospital resources utilisation with predictive and epidemiological models

Abstract

The primary aim of this thesis was to investigate the feasibility and robustness of predictive machine-learning models in the context of improving hospital resources’ utilisation with data- driven approaches and predicting hospitalisation with hospital quality assessment metrics such as length of stay. The length of stay predictions includes the validity of the proposed methodological predictive framework on each hospital’s electronic health records data source. In this thesis, we relied on electronic health records (EHRs) to drive a data-driven predictive inpatient length of stay (LOS) research framework that suits the most demanding hospital facilities for hospital resources’ utilisation context. The thesis focused on the viability of the methodological predictive length of stay approaches on dynamic and demanding healthcare facilities and hospital settings such as the intensive care units and the emergency departments. While the hospital length of stay predictions are (internal) healthcare inpatients outcomes assessment at the time of admission to discharge, the thesis also considered (external) factors outside hospital control, such as forecasting future hospitalisations from the spread of infectious communicable disease during pandemics. The internal and external splits are the thesis’ main contributions. Therefore, the thesis evaluated the public health measures during events of uncertainty (e.g. pandemics) and measured the effect of non-pharmaceutical intervention during outbreaks on future hospitalised cases. This approach is the first contribution in the literature to examine the epidemiological curves’ effect using simulation models to project the future hospitalisations on their strong potential to impact hospital beds’ availability and stress hospital workflow and workers, to the best of our knowledge. The main research commonalities between chapters are the usefulness of ensembles learning models in the context of LOS for hospital resources utilisation. The ensembles learning models anticipate better predictive performance by combining several base models to produce an optimal predictive model. These predictive models explored the internal LOS for various chronic and acute conditions using data-driven approaches to determine the most accurate and powerful predicted outcomes. This eventually helps to achieve desired outcomes for hospital professionals who are working in hospital settings

    Similar works