research

Elastic Cross Sections for Electron Collisions with Molecules Relevant to Plasma Processing

Abstract

Absolute electron-impact cross sections for molecular targets, including their radicals, are important in developing plasma reactors and testing various plasma processing gases. Low-energy electron collision data for these gases are sparse and only the limited cross section data are available. In this report, elastic cross sections for electron-polyatomic molecule collisions are compiled and reviewed for 17molecules relevant to plasma processing. Elastic cross sections are essential for the absolute scale conversion of inelastic cross sections, as well as for testing computational methods. Data are collected and reviewed for elastic differential, integral, and momentum transfer cross sections and, for each molecule, the recommended values of the cross section are presented. The literature has been surveyed through early 2010.This work is accomplished as a collaboration through APAN (Asia-Pacific Atomic Data Network: a network for dissemination of collisional data relevant to plasmas, discharges, materials, and biosciences). H.C. acknowledges a support by the National Research Foundation of Korea (Grant No. 20100000035), and M.J.B. and S.J.B. support from the Australian Research Council Center of Excellence for Antimatter-Matter Studies. Collaboration between NIFS and NFRI is also acknowledged for the Korea-Japan exchanges

    Similar works