The need of a fs-scale pulsed, high repetition rate, X-ray source for time-resolved fine analysis of matter
(spectroscopy and photon scattering) in the linear response regime is addressed by the conceptual design of a
facility called MariX (Multi-disciplinary Advanced Research Infrastructure for the generation and application of
X-rays) outperforming current X-ray sources for the declared scope. MariX is based on the original design of a
two-pass two-way superconducting linear electron accelerator, equipped with an arc compressor, to be operated
in CW mode (1 MHz). MariX provides FEL emission in the range 0.2–8 keV with 108 photons per pulse ideally
suited for photoelectric effect and inelastic X-ray scattering experiments. The accelerator complex includes an
early stage that supports an advanced inverse Compton source of very high-flux hard X-rays of energies up
to 180 keV that is well adapted for large area radiological imaging, realizing a broad science programme and
serving a multidisciplinary user community, covering fundamental science of matter and application to life
sciences, including health at preclinical and clinical level