CORE
πΊπ¦Β
Β make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Existence of global and explosive mild solutions of fractional reaction-diffusion system of semilinear SPDEs with fractional noise
Authors
S. Karthikeyan
Manil T. Mohan
S. Sankar
Publication date
6 November 2022
Publisher
View
on
arXiv
Abstract
In this paper, we investigate the existence and finite-time blow-up for the solution of a reaction-diffusion system of semilinear stochastic partial differential equations (SPDEs) subjected to a two-dimensional fractional Brownian motion given by
{
d
u
1
(
t
,
x
)
=
[
Ξ
Ξ±
u
1
(
t
,
x
)
+
Ξ³
1
u
1
(
t
,
x
)
+
u
2
1
+
Ξ²
1
(
t
,
x
)
]
d
t
+
k
11
u
1
(
t
,
x
)
d
B
1
H
(
t
)
+
k
12
u
1
(
t
,
x
)
d
B
2
H
(
t
)
,
d
u
2
(
t
,
x
)
=
[
Ξ
Ξ±
u
2
(
t
,
x
)
+
Ξ³
2
u
2
(
t
,
x
)
+
u
1
1
+
Ξ²
2
(
t
,
x
)
]
d
t
+
k
21
u
2
(
t
,
x
)
d
B
1
H
(
t
)
+
k
22
u
2
(
t
,
x
)
d
B
2
H
(
t
)
,
\left\{\begin{aligned} du_{1}(t,x)&=\left[ \Delta_{\alpha}u_{1}(t,x)+\gamma_{1}u_{1}(t,x)+u^{1+\beta_{1}}_{2}(t,x) \right]dt +k_{11}u_{1}(t,x)dB^{H}_{1}(t)+k_{12}u_{1}(t,x)dB^{H}_{2}(t), \\ du_{2}(t,x)&=\left[ \Delta_{\alpha}u_{2}(t,x)+\gamma_{2}u_{2}(t,x)+u^{1+\beta_{2}}_{1}(t,x) \right]dt+k_{21}u_{2}(t,x)dB^{H}_{1}(t)+k_{22}u_{2}(t,x)dB^{H}_{2}(t), \\ \end{aligned}\right.
β©
β¨
β§
β
d
u
1
β
(
t
,
x
)
d
u
2
β
(
t
,
x
)
β
=
[
Ξ
Ξ±
β
u
1
β
(
t
,
x
)
+
Ξ³
1
β
u
1
β
(
t
,
x
)
+
u
2
1
+
Ξ²
1
β
β
(
t
,
x
)
]
d
t
+
k
11
β
u
1
β
(
t
,
x
)
d
B
1
H
β
(
t
)
+
k
12
β
u
1
β
(
t
,
x
)
d
B
2
H
β
(
t
)
,
=
[
Ξ
Ξ±
β
u
2
β
(
t
,
x
)
+
Ξ³
2
β
u
2
β
(
t
,
x
)
+
u
1
1
+
Ξ²
2
β
β
(
t
,
x
)
]
d
t
+
k
21
β
u
2
β
(
t
,
x
)
d
B
1
H
β
(
t
)
+
k
22
β
u
2
β
(
t
,
x
)
d
B
2
H
β
(
t
)
,
β
for
x
β
R
d
,
Β
t
β₯
0
x \in \mathbb{R}^{d},\ t \geq 0
x
β
R
d
,
Β
t
β₯
0
, along with
u
i
(
0
,
x
)
=
f
i
(
x
)
,
x
β
R
d
,
\begin{array}{ll} u_{i}(0,x)=f_{i}(x), &x \in \mathbb{R}^{d}, \nonumber\\ \end{array}
u
i
β
(
0
,
x
)
=
f
i
β
(
x
)
,
β
x
β
R
d
,
β
where
Ξ
Ξ±
\Delta_{\alpha}
Ξ
Ξ±
β
is the fractional power
β
(
β
Ξ
)
Ξ±
2
-(-\Delta)^{\frac{\alpha}{2}}
β
(
β
Ξ
)
2
Ξ±
β
of the Laplacian,
0
<
Ξ±
β€
2
0<\alpha \leq 2
0
<
Ξ±
β€
2
and
Ξ²
i
>
0
,
Β
Ξ³
i
>
0
\beta_{i}>0,\ \gamma_{i}>0
Ξ²
i
β
>
0
,
Β
Ξ³
i
β
>
0
and
k
i
j
β
0
,
i
,
j
=
1
,
2
k_{ij}\neq 0, i,j=1,2
k
ij
β
ξ
=
0
,
i
,
j
=
1
,
2
are constants. We provide sufficient conditions for the existence of a global weak solution. Under the assumption that
Ξ²
1
β₯
Ξ²
2
>
0
\beta_{1}\geq \beta_{2}>0
Ξ²
1
β
β₯
Ξ²
2
β
>
0
with Hurst index
1
/
2
β€
H
<
1
,
1/2 \leq H < 1,
1/2
β€
H
<
1
,
we obtain the blow-up times for an associated system of random partial differential equations in terms of an integral representation of exponential functions of Brownian motions. Moreover, we provide lower and upper bounds for the finite-time blow-up of the above system of SPDEs and obtain the lower and upper bounds for the probability of non-explosive solutions to our considered system
Similar works
Full text
Available Versions
arXiv.org e-Print Archive
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:arXiv.org:2211.03111
Last time updated on 12/12/2022