Cyber-physical interdependent restoration scheduling for active distribution network via ad hoc wireless communication

Abstract

This paper proposes a post-disaster cyber-physical interdependent restoration scheduling (CPIRS) framework for active distribution networks (ADN) where the simultaneous damages on cyber and physical networks are considered. The ad hoc wireless device-to-device (D2D) communication is leveraged, for the first time, to establish cyber networks instantly after the disaster to support ADN restoration. The repair and operation crew dispatching, the remote-controlled network reconfiguration and the system operation with DERs can be effectively coordinated under the cyber-physical interactions. The uncertain outputs of renewable energy resources (RESs) are represented by budget-constrained polyhedral uncertainty sets. Through implementing linearization techniques on disjunctive expressions, a monolithic mixed-integer linear programming (MILP) based two-stage robust optimization model is formulated and subsequently solved by a customized column-and-constraint generation (C&CG) algorithm. Numerical results on the IEEE 123-node distribution system demonstrate the effectiveness and superiorities of the proposed CPIRS method for ADN

    Similar works

    Full text

    thumbnail-image

    Available Versions