Reliability of roof structures subjected to snow loads

Abstract

A proper evaluation of snow loads on roofs is crucial for structural design especially to guarantee an adequate reliability level of lightweight roof structures. The definition of roof snow load in structural codes is based on both the evaluation of ground snow loads and conversion factors from ground to roof load, which are function of the roof’s geometry, its exposure to wind and its thermal properties. However, reference values of roof snow loads are based only on an extreme value analysis carried out to derive characteristic values of ground snow load, while conversion factors are considered as deterministic quantities due to the lack of the data. In this paper, first a methodology to evaluate the reference value of roof snow load is presented based on the definition of probability density functions for ground snow loads and conversion factors accounting for roof’s geometry and its exposure to wind. The results lead to the definition of a design conversion factor which depend on the coefficient of variation of ground snow loads and are compared with the constant values provided by the Eurocode models, in EN1991-1-3:2003. Then, structural reliability is assessed for reference steel and timber structures located in different sites. Considering different proportions between variable and permanent loads, the reliability of flat roofs designed according to Eurocode provisions, provided by the current version and the new draft, is finally compared with the required target reliability levels

    Similar works