Jet impingement on the underside of a superhydrophobic surface

Abstract

Water patch topology and momentum loss resulting from a jet impacting on the underside of a flat plate with varied hydrophobicity were studied. The jet's Reynolds and Froude numbers ranged from 3700 to 31 000, and from 1 to 23, respectively. Hence effects of gravity were expected to be non-negligible, and data suggest that this is the case for hydrophobic surfaces. The interplay of gravity, surface tension, inertia and viscosity resulted in two distinct behaviours. On hydrophilic surfaces, water spread uniformly. Friction reduced momentum, and led to accumulation at the edges of the patch until gravity overcame surface tension and produced droplets. On hydrophobic surfaces, two rims formed, enclosing a thin laminar film. The patch shape was mostly determined by the balance of kinetic and surface energy. Dewetting occurred in most cases when the two rims merged, but for a narrow parameter, range water detached soon after impact and formed a type of skewed water bell. The transition in detachment topology was predicted reasonably by a simple model considering whether an attached or detached rim minimizes energy. Due to promotion of dewetting by gravity, the water patch area decreased compared to that reported in previous studies, which considered jet impingement on vertical surfaces and tops of horizontal surfaces. Owing to the application that motivated this study, the streamwise force on the plate was also measured. On hydrophobic surfaces the reduction in force correlated with the reduction in water patch area. Water patch area and momentum loss were both found to scale best with the contact-angle-modified Weber number

    Similar works