CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Mechanisms for generating toroidal rotation in tokamaks without external momentum input
Authors
RE Bell
KH Burrell
+15 more
AJ Cole
JS Degrassie
PH Diamond
AM Garofalo
TS Hahm
GL Jackson
SM Kaye
MJ Lanctot
CC Petty
H Reimerdes
SA Sabbagh
WM Solomon
EJ Strait
T Tala
RE Waltz
Publication date
1 May 2010
Publisher
eScholarship, University of California
Abstract
Recent experiments on DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] and National Spherical Torus Experiment (NSTX) [M. Ono, Nucl. Fusion 40, 557 (2000)] have focused on investigating mechanisms of driving rotation in fusion plasmas. The so-called intrinsic rotation is generated by an effective torque, driven by residual stresses in the plasma, which appears to originate in the plasma edge. A clear scaling of this intrinsic drive with the H-mode pressure gradient is observed. Coupled with the experimentally inferred pinch of angular momentum, such an edge source is capable of producing sheared rotation profiles. Intrinsic drive is also possible directly in the core, although the physics mechanisms are much more complex. Another option which is being explored is the use of nonresonant magnetic fields for spinning the plasma. It is found beneficially that the torque from these fields can be enhanced at low rotation, which assists in spinning the plasma from rest, and offers increased resistance against plasma slowing. © 2010 American Institute of Physics
Similar works
Full text
Available Versions
Sustaining member
eScholarship - University of California
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:escholarship.org:ark:/1303...
Last time updated on 25/12/2021