Ballistic transport simulation in nanodevices, which involves self-consistently solving a coupled Schrodinger-Poisson system of equations, is usually computationally intensive. Here, we propose coupling the reduced basis method with the subband decomposition method to improve the overall efficiency of the simulation. By exploiting a posteriori error estimation procedure and greedy sampling algorithm, we are able to design an algorithm where the computational cost is reduced significantly. In addition, the computational cost only grows marginally with the number of grid points in the confined direction