An Iterative Bidirectional Gradient Boosting Algorithm for CVR Baseline Estimation

Abstract

This paper presents a novel iterative, bidirectional, gradient boosting (bidirectional-GB) algorithm for estimating the baseline of the Conservation Voltage Reduction (CVR) program. We define the CVR baseline as the load profile during the CVR period if the substation voltage is not lowered. The proposed algorithm consists of two key steps: selection of similar days and iterative bidirectional-GB training. In the first step, pre- and post-event temperature profiles of the targeted CVR day are used to select similar days from historical non-CVR days. In the second step, the pre-event and post-event similar days are used to train two GBMs iteratively: a forward-GBM and a backward-GBM. After each iteration, the two generated CVR baselines are reconciled and only the first and the last points on the reconciled baseline are kept. The iteration repeats until all CVR baseline points are generated. We tested two gradient boosting methods (i.e., GBM and LighGBM) with two data resolutions (i.e., 15- and 30-minute). The results demonstrate that both the accuracy and performance of the algorithm are satisfactory.Comment: 5 pages, 8 figures, 2 table

    Similar works

    Full text

    thumbnail-image

    Available Versions