Comparison principle for stochastic heat equations driven by α\alpha-stable white noises

Abstract

For a class of non-linear stochastic heat equations driven by α\alpha-stable white noises for α∈(1,2)\alpha\in(1,2) with Lipschitz coefficients, we first show the existence and pathwise uniqueness of LpL^p-valued c\`{a}dl\`{a}g solutions to such a equation for p∈(α,2]p\in(\alpha,2] by considering a sequence of approximating stochastic heat equations driven by truncated α\alpha-stable white noises obtained by removing the big jumps from the original α\alpha-stable white noises. If the α\alpha-stable white noise is spectrally one-sided, under additional monotonicity assumption on noise coefficients, we prove a comparison theorem on the L2L^2-valued c\`{a}dl\`{a}g solutions of such a equation. As a consequence, the non-negativity of the L2L^2-valued c\`{a}dl\`{a}g solution is established for the above stochastic heat equation with non-negative initial function

    Similar works

    Full text

    thumbnail-image

    Available Versions