Objectives The aim of this study was to investigate the effect of daptomycin against vancomycin-resistant Enterococcus faecium bacteraemia using computer modelling. Methods Data obtained in vitro from time-kill curves were evaluated by PK/PD modelling and Monte Carlo simulations to determine the logarithmic reduction in the number of colony-forming units (CFU)/mL over 18 days of daptomycin treatment at 6, 8, and 10 mg/kg doses every 24 or 48 h and with variations in creatinine clearance (CLCR) of 15–29, 30–49, and 50–100 mL/min/1.73 m2. Monte Carlo simulations were performed to evaluate the probability of target attainment (PTA) for an area under the unbound drug concentration-time curve/minimum inhibitory concentration (fAUC/MIC) > 36 at the same doses and CLCR. Results Static time-kill model was employed to investigate the antibacterial efficacy of constant daptomycin concentrations. The time-kill curve analysis was performed using mathematical modelling based on a Hill coefficient factor. There was an expressive reduction (> 2 Log CFU/mL) over 18 days of daptomycin treatment in 75th percentile of individuals with CLCR of 15–100 mL/min/1.73 m2) with daptomycin 6–10 mg/kg/day, except for daptomycin every 48 h. Using fAUC/MIC > 36, PTA was > 90% at MICs ≤ 2 μg/mL. Conclusions Higher daptomycin doses were associated with higher mortality in time-kill curves. The simulations indicated that independent of the CLCR the therapeutic responses of VRE occur with doses of daptomycin ≥ 6 mg/kg/day and daptomycin every 48 h is insufficient to treat enterococcal bacteraemia