We investigated the relationship between the increase in the maximum quantum efficiency of negative electron affinity (NEA)-GaAs depending on the thermal cleaning conditions and residual species, e.g., Ga_2O_3 and Cs atoms, on the GaAs surface using temperature-programmed desorption. We found that the increase in the maximum quantum efficiency occurs during thermal cleaning at 500–600℃ for ~8.5 min. The increase in ratio was maximum when the amount of Ga_2O_3 on the GaAs surface was maximum. In the case that Cs atoms remained, when the thermal cleaning was performed in a temperature range where Ga_2O_3 was not formed, the effect facilitating an NEA surface formation was observed. However, the residual Cs atoms might not be affected at an increased maximum quantum efficiency. From the above results, we considered that the double-dipole structures of Cs-Ga_2O_3 and Cs-O are significant to the high quantum efficiency. The Cs-O dipoles are considered to form easily when Ga_2O_3 is on the GaAs surface before the NEA activation, and the amount of Cs-O dipoles required to reduce the vacuum level below the conduction band minimum increase more than usually NEA surface. As a result, the maximum quantum efficiency increases