CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Greater Bone Marrow Adiposity Predicts Bone Loss in Older Women.
Authors
Gudny Eiriksdottir
Susan K Ewing
+12 more
Vilmundur Gudnason
Tamara B Harris
Trisha F Hue
Deborah M Kado
Thomas F Lang
Xiaojuan Li
Clifford Rosen
Ann V Schwartz
Sigurdur Sigurdsson
Eric Vittinghoff
Gina N Woods
Kaipin Xu
Publication date
1 February 2020
Publisher
eScholarship, University of California
Abstract
Bone marrow adiposity (BMA) is associated with aging and osteoporosis, but whether BMA can predict bone loss and fractures remains unknown. Using data from the Age Gene/Environment Susceptibility (AGES)-Reykjavik study, we investigated the associations between 1 H-MRS-based measures of vertebral bone marrow adipose tissue (BMAT), annualized change in bone density/strength by quantitative computed tomography (QCT) and DXA, and secondarily, with incident clinical fractures and radiographic vertebral fractures among older adults. The associations between BMAT and annualized change in bone density/strength were evaluated using linear regression models, adjusted for age, body mass index (BMI), diabetes, estradiol, and testosterone. Cox proportional hazards models were used to evaluate the associations between baseline BMAT and incident clinical fractures, and logistic regression models for incident vertebral fractures. At baseline, mean ± SD age was 80.9 ± 4.2 and 82.6 ± 4.2 years in women (n = 148) and men (n = 150), respectively. Mean baseline BMAT was 55.4% ± 8.1% in women and 54.1% ± 8.2% in men. Incident clinical fractures occurred in 7.4% of women over 2.8 years and in 6.0% of men over 2.2 years. Incident vertebral fractures occurred in 12% of women over 3.3 years and in 17% of men over 2.7 years. Each 1 SD increase in baseline BMAT was associated with a 3.9 mg2 /cm4 /year greater loss of spine compressive strength index (p value = .003), a 0.9 mg/cm3 /year greater loss of spine trabecular BMD (p value = .02), and a 1.2 mg/cm3 /year greater loss of femoral neck trabecular BMD (p value = .02) in women. Among men, there were no associations between BMAT and changes in bone density/strength. There were no associations between BMAT and incident fractures in women or men. In conclusion, we found greater BMAT is associated with greater loss of trabecular bone at the spine and femoral neck, and greater loss of spine compressive strength, in older women. © 2019 American Society for Bone and Mineral Research
Similar works
Full text
Available Versions
Sustaining member
eScholarship - University of California
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:escholarship.org:ark:/1303...
Last time updated on 25/12/2021