Long-term, sustainable management of zebra chip disease of potato, caused by 'Candidatus Liberibacter solanacearum' (Lso) and vectored by potato psyllids (Bactericera cockerelli Sulc [Hemiptera: Triozidae]), requires development of cultivars resistant or tolerant to infection or capable of reducing spread or both. We examined the influence that five experimental breeding clones of potato had on potato psyllids and their ability to vector Lso. The ability of these potato clones to resist aphids (green peach aphids, Myzus persicae Sulzer [Hemiptera: Aphididae]) also was examined. Due to the importance of host chemistry on plant-insect interactions, levels of primary metabolites of amino acids and sugars, as well as secondary metabolites including polyphenolics, terpenoids, and alkaloids were compared between breeding clones and a commercial cultivar. Findings for compound levels then were associated with observed changes in host susceptibility to psyllids or aphids. Psyllids oviposited less on three breeding clones than Atlantic, but no significant effects of breeding clones on psyllid feeding or choice were observed. Aphid reproduction was reduced on two clones relative to Atlantic. A05379-211 had greater sugar levels and postpsyllid amino acid levels than Atlantic. Total alkaloid and phenolic levels were greater in all breeding clones than Atlantic. Total terpenoid levels were greater in PALB03016-3 and PALB03016-6 than Atlantic, which might explain, in part, the observed resistance to psyllid oviposition and aphid reproduction. Overall, these results suggest that increased levels of certain metabolites in breeding clones could affect psyllid and aphid reproduction