Ultrasound contrast enhanced imaging has seen widespread uptake in research
and clinical diagnostic imaging. This includes applications such as vector flow
imaging, functional ultrasound and super-resolution Ultrasound Localization
Microscopy (ULM). All of these require testing and validation during
development of new algorithms with ground truth data. In this work we present a
comprehensive simulation platform BUbble Flow Field (BUFF) that generates
contrast enhanced ultrasound images in vascular tree geometries with realistic
flow characteristics and validation algorithms for ULM. BUFF allows complex
micro-vascular network generation of random and user-defined vascular networks.
Blood flow is simulated with a fast Computational Fluid Dynamics (CFD) solver
and allows arbitrary input and output positions and custom pressures. The
acoustic field simulation is combined with non-linear Microbubble (MB) dynamics
and simulates a range of point spread functions based on user-defined MB
characteristics. The validation combines both binary and quantitative metrics.
BFF's capacity to generate and validate user-defined networks is demonstrated
through its implementation in the Ultrasound Localisation and TRacking
Algorithms for Super Resolution (ULTRA-SR) Challenge at the International
Ultrasonics Symposium (IUS) 2022 of the Institute of Electrical and Electronics
Engineers (IEEE). The ability to produce ULM images, and the availability of a
ground truth in localisation and tracking enables objective and quantitative
evaluation of the large number of localisation and tracking algorithms
developed in the field. BUFF can also benefit deep learning based methods by
automatically generating datasets for training. BUFF is a fully comprehensive
simulation platform for testing and validation of novel ULM techniques and is
open source.Comment: 10 Pages, 9 Figure