Most existing point cloud completion methods suffer from the discrete nature
of point clouds and the unstructured prediction of points in local regions,
which makes it difficult to reveal fine local geometric details. To resolve
this issue, we propose SnowflakeNet with snowflake point deconvolution (SPD) to
generate complete point clouds. SPD models the generation of point clouds as
the snowflake-like growth of points, where child points are generated
progressively by splitting their parent points after each SPD. Our insight into
the detailed geometry is to introduce a skip-transformer in the SPD to learn
the point splitting patterns that can best fit the local regions. The
skip-transformer leverages attention mechanism to summarize the splitting
patterns used in the previous SPD layer to produce the splitting in the current
layer. The locally compact and structured point clouds generated by SPD
precisely reveal the structural characteristics of the 3D shape in local
patches, which enables us to predict highly detailed geometries. Moreover,
since SPD is a general operation that is not limited to completion, we explore
its applications in other generative tasks, including point cloud
auto-encoding, generation, single image reconstruction, and upsampling. Our
experimental results outperform state-of-the-art methods under widely used
benchmarks.Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 2022. This work is a journal extension of our ICCV 2021 paper
arXiv:2108.04444 . The first two authors contributed equall