Effects of feedback on galaxies in the VELA simulations: elongation, clumps and compaction

Abstract

The evolution of star-forming galaxies at high redshifts is very sensitive to the strength and nature of stellar feedback. Using two sets of cosmological, zoom-in simulations from the VELA suite, we compare the effects of two different models of feedback: with and without kinetic feedback. At a fixed halo mass and redshift, the stellar mass is reduced by a factor of 1-3 in the models with stronger feedback, so the stellar-mass-halo-mass relation is in better agreement with abundance matching results. On the other hand, galaxy elongation is robust against feedback strength. At a fixed stellar mass, Ms < 10^10 Msun, galaxies are more elongated in the strong-feedback case. More massive, star-forming discs with high surface densities form giant clumps. However, the population of round, compact, old (age_c > 300 Myr), quenched, stellar (or gas-poor) clumps is absent in the model with strong feedback. On the other hand, giant star-forming clumps with intermediate ages (age_c = 100-300 Myr) can survive for several disc dynamical times, independently of feedback strength. The evolution through compaction followed by quenching in the plane of central surface density and specific star-formation rate is similar under the two feedback models.Comment: 14 pages, 12 figures, submitted to MNRA

    Similar works

    Full text

    thumbnail-image

    Available Versions