Filtering crosstalk from bath non-Markovianity via spacetime classical shadows

Abstract

From an open system perspective non-Markovian effects due to a nearby bath or neighbouring qubits are dynamically equivalent. However, there is a conceptual distinction to account for: neighbouring qubits may be controlled. We combine recent advances in non-Markovian quantum process tomography with the framework of classical shadows to characterise spatiotemporal quantum correlations. Observables here constitute operations applied to the system, where the free operation is the maximally depolarising channel. Using this as a causal break, we systematically erase causal pathways to narrow down the progenitors of temporal correlations. We show that one application of this is to filter out the effects of crosstalk and probe only non-Markovianity from an inaccessible bath. It also provides a lens on spatiotemporally spreading correlated noise throughout a lattice from common environments. We demonstrate both examples on synthetic data. Owing to the scaling of classical shadows, we can erase arbitrarily many neighbouring qubits at no extra cost. Our procedure is thus efficient and amenable to systems even with all-to-all interactions.Comment: 5 pages, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions