Dynamic Modeling Of Spherical Variable-Shape Wave Energy Converters

Abstract

In the recently introduced Variable-Shape heaving wave energy converters, the buoy changes its shape in response to changing incident waves actively. In this study, the dynamic model for a spherical Variable-Shape Wave Energy Converter is developed using the Lagrangian approach. The classical bending theory is used to write the stress-strain equations for the flexible body using Love's first approximation. The elastic spherical shell is assumed to have an axisymmetric vibration behavior. The Rayleigh-Ritz discretization method is adopted to find an approximate solution for the vibration model of the spherical shell. One-way Fluid-Structure Interaction simulations are performed using MATLAB to validate the developed dynamic model and to study the effect of using a flexible buoy in the wave energy converter on its trajectory and power production.Comment: 24 pages, 8 figures, and 2 tables, the paper is currently under review (journal

    Similar works

    Full text

    thumbnail-image

    Available Versions