We describe a generative network model of the architecture of the enteric
nervous system (ENS) in the colon employing data from images of human and mouse
tissue samples obtained through confocal microscopy. Our models combine spatial
point pattern analysis with graph generation to characterize the spatial and
topological properties of the ganglia (clusters of neurons and glial cells),
the inter-ganglionic connections, and the neuronal organization within the
ganglia. We employ a hybrid hardcore-Strauss process for spatial patterns and a
planar random graph generation for constructing the spatially embedded network.
We show that our generative model may be helpful in both basic and
translational studies, and it is sufficiently expressive to model the ENS
architecture of individuals who vary in age and health status. Increased
understanding of the ENS connectome will enable the use of neuromodulation
strategies in treatment and clarify anatomic diagnostic criteria for people
with bowel motility disorders.Comment: 17 pages, 5 figure