In the stars hydrogen nuclei are continuously transformed into helium atoms releasing huge amounts of energy. The aim of the research on controlled thermonuclear fusion is to reproduce on earth what happens in the stars, in order to provide sustainable energy supply for the new generations.
The research began in the 1950s, when several fusion machines were established in nearly every industrialized nation. In 1968 in the Soviet Union researchers, using a strong toroidal magnetic eld in the so-called tokamak device (the Russian acronym for toroidal'naya kamera s magnitnymi katushkami that means toroidal chamber with magnetic eld), were able to achieve for the rst time promising temperature levels and plasma connement times, two of the main criteria to achieve fusion.
Following this result, in the early 1980s a generation of large tokamak experiments were built: the Join European Torus (JET) in Europe, the Doublet III in US and the Japan Torus (JT-60) in Japan. A series of good results obtained in those experiments led to project and then to start building the next step fusion experiment, ITER, as a result of an international collaboration. The aim of this machine is to demonstrate the scientic feasibility of fusion. This should be last step before the rst demonstrative fusion reactor power plant, called DEMO.
One of the major issues in the design and construction of a nuclear fusion reactor based on a magnetically conned plasma is the interaction of the hot plasma with the rst wall material components of such a device. On one hand plasma can be contaminated by impurities or the wall can absorb an unsafe
quantity of radiative tritium. On the other particle bombardment and the high energy ux on the wall could alterate the rst wall material structures.
Many present or planed experiments are devoted to address this point: for example the present experiments at JET which study the eect on plasma of an ITER like wall or the planed International Fusion Materials Irradiation Facility (IFMIF) device which will study the eect of fusion neutron radiation on materials.
The work I carried out during my PhD and presented in this thesis is inserted in this eld of research. It was mainly focused on the study of the plasma edge and its interaction with the rst wall, both by an experimental and by a theoretical point of view. Most of my work has been carried out at Consorzio RFX, where it is in operation the largest Reversed Field Pinch device, RFX-mod. The Reversed Field Pinch (shortly called RFP) is one of
the three main magnetic congurations tested to conne a plasma, the other two are the tokamak and the stellarator. In particular all the experimental part has been done on RFX-mod, where I worked on several experimental devices in order to perform the coating with a thin layer of lithium of the plasma facing components made of graphite and to study the eectiveness of
dierent fuelling techniques. The theoretical part was devoted to learn how to use transport codes to describe the edge plasma physics and to apply them to the modelling of tokamak Scrape-O Layer, in case of limiter as well divertor congurations.
Since the study of the plasma edge developed during these three years was done by experimental and theoretical points of view, it was found convenient to organize this manuscript in two main parts, the experimental one in chapters 3, 4 and 5 and the theoretical one in chapters 6, 7 and 8.
Chapter 1 contains an introduction to the nuclear fusion. The physical principles involved and the three experiments I worked on (RFX-mod, FTU and JET) will be briey presented. There is also a brief description of ITER, the next step fusion experiment.
Chapter 2 provides an overview of the physics concerning the edge and the interactions between plasma and solid materials.
Chapter 3 presents the work carried out to provide RFX-mod with a room temperature pellet injector to perform wall conditioning by mean of Li pellets and to perform impurities transport studies. Together with the injector are also presented the diagnostics and the techniques used to measure the ablation rate and the trajectory of the pellet when is lunched inside the plasma. In the second part of the chapter is described the ablation code used to evaluate the required pellet parameters, depending on the aim of its injection.
Chapter 4 is dedicated to describe the RFX-mod lithization. In the rst part are described the experimental campaigns performed to optimize the wall conditioning technique, while in the second part discusses the eects of lithization on the plasma behavior. Particular attention was paid to the evidence also on RFX-mod of the three eects that are clearly noted in most of the devices where the lithization was applied: electron density prole peaking, particle/energy connement time improvement and impurity reductions.
Chapter 5 presents a dierent aspect of the density control. On RFX-mod two dierent refueling techniques used: the hydrogen pellet injection and the gas pung. These two techniques are described and compared in terms of eciency and plasma perturbation. Here are also described the main parts of the cryogenic pellet injector I had to deal with and some test I did to ensure its optimization to perform the H pellet injection required for refuelling studies and routine RFX-mod operation.
Chapter 6 deals with the simulation of JET edge by mean of the EDGE2D transport code. Here it is presented a study of the validity range of the code, a comparison of the simulation results with the prediction of a 0-dimensional model and the study of dierent divertor regimes that can be achieved as a function of the electron core plasma density and temperature.
Chapter 7 provides a description of the multiuid transport code B2 and the kinetic neutrals code EIRENE that have been used to model the FTU plasma edge. Here are briey introduced the Braginskii equations to describe the plasma edge transport and their reduced set solved by B2.
Then the implementation of several magnetic equilibrium and plasma features are discussed.
Chapter 8 presents the work carried out to prepare the simulations in order to model FTU edge. Here are described the rst simulations performed, their comparison with the experimental results and also the solutions adopted to t the data.
Chapter 9 concludes the thesis with the discussion of the most important results achieved and the discussion of future developments.Nel nucleo delle stelle l'idrogeno viene continuamente trasformato in elio rilasciando grandi quatità di energia. La ricerca sulla fusione termonucleare controllata ha l'obiettivo di riprodurre sulla terra quanto avviene nelle stelle, per poter produrre energia in modo sostenibile.
La ricerca iniziò negli anni '50 quando diverse macchine da fusione furono costruite in quasi tutti i paesi industrializzati. In Unione Sovietica nel 1968 per la prima volta dei ricercatori, usando intensi campi magnetici toroidali nei dispositivi denominati tokamak (dal russo toroidal'naya kamera s magnitnymi katushkami, cioé cella toroidale con bobine magnetiche), furono in grado di ottenere plasmi caratterizzati da valori promettenti di temperatura e tempo di connamento, due dei criteri principali per ottenere la fusione. In seguito a questi risultati negli anni '80 fu costruita una serie di dispositivi di tipo tokamak di grandi dimensioni: il Join European Torus (JET) in Europa, Doublet III negli Stati Uniti e il Japan Torous (JT-60) in Giappone. I buoni risultati ottenuti da questi esperimenti hanno portato a progettare prima, e ad iniziare a costruire poi, ITER, l'esperimento da fusione di nuova generazione frutto di una
collaborazione internazionale. Scopo di questo esperimento sarà dimostrare scienticamente la fattibilità della fusione. Questo dovrebbe essere l'ultimo passo prima dell'impianto dimostrativo di produzione di energia elettrica da fusione denominato DEMO.
Una delle dicoltà maggiori che si incontrano nella progettazione e
nella realizzazione di un reattore nucleare a fusione basato su plasmi connati magneticamente è l'interazione fra il plasma stesso e le componenti del reattore ad esso aacciate. Da una parte infatti il plasma potrebbe venir contaminato dalle impurezze rilasciate o la parete può assoribire una ecessiva e pericolosa quantità di trizio radiattivo. Dall'altra il bombardamento di particelle e gli alti ussi termici che colpiscono le componenti del reattore potrebbero alterarne la struttura.
Il lavoro da me svolto durante il dottorato e presentato in questa tesi si inserisce nell'ambito della ricerca sulla fusione nucleare. In particolare si è concentrato nello studio della regione di plasma più vicina alle superfici solide e la sua interazione con esse, sia da un punto di vista sperimentale che teorico. La maggior parte del lavoro è stato svolto presso il Consorzio RFX, dove opera RFX-mod che è l'esperimento in congurazione Reversed Field Pinch di maggiori dimensioni al mondo. Il Reversed Field Pinch (o RFP) è una delle tre principali congurazioni magnetiche utilizzate per connare il plasma, le altre due sono la già citata tokamak e quella denominata stellarator. In particolare tutta la parte sperimentale della mia tesi è stata svolta su RFX-mod, dove ho partecipato a diverse sessioni sperimentali per poter ricoprire di un sottile lm di litio le componenti a contatto col plasma, che sono fatte di grate. La parte teorica si è concentrata nello studio di codici di trasporto che descrivono il plasma di bordo e nella loro applicazione per simulare lo Scrape O-Layer di tokamak sia in congurazione limiter che divertore.
Poiché lo studio del plasma di bordo svolto durante questi tre anni è stato fatto sia dal punto di vista sperimentale che da quello teorico, si è trovato conveninte organizzare il presente scritto in due parti principali. La parte sperimentale verrà descritta nei capitoli 3, 4 e 5 mentre quella teorica nei capitoli 6, 7 e 8.
Capitolo 1 contiene una breve introduzione alla fusione nucleare. Verrano brevemente presentati i principi sici e i tre esperimenti (RFX-mod, FTU, JET) su cui ho lavorato. C'è inoltre una breve descrizione di ITER, l'esperimento di nuova generazione.
Capitolo 2 dà una visione d'insieme della sica coinvolta nello studio di plasmi che interagiscono con superci solide.
Capitolo 3 presenta il lavoro svolto per dotare RFX-mod di un iniettore di pellet a temperatura ambiente per poter svolgere la litizzazione per mezzo di pellet di litio e per poter studiare il trasporto di impurezze. Assieme all'iniettore vengono anche presentati le diagnostiche e le tecniche utilizzate per misurare il tasso di ablazione e la traiettoria dei pellet una volta lanciati all'interno del plasma. nella seconda parte del capitolo c'è la descrione del codice di ablazione utilizzato per stabilire le caratteristiche richieste dei pellet a seconda dello scopo del loro
utilizzo.
Capitolo 4 è dedicato alla descrizione della litizzazione di RFX-mod.
Nella prima parte sono presentate le campagne sperimentali svolte per ottimizzare la tecnica di litizzazione. Nella restante parte si presentano gli eetti della litizzazione sul plasma. Particolare attenzione viene prestata alla presenza dei tre eetti chiaramente osservati nella maggior parte degli esperimenti dove era già stata svolta: il piccaggio dei proli di densità, il miglioramento del tempo di connamento di particelle ed energia, la riduzione delle impurezze.
Capitolo 5 presenta un diverso aspetto del controllo di densità. Le
tecniche utilizzate su RFX-mod per fornire il plasma di particelle sono l'iniezione di pellet di idrogeno e l'immissione di gas. Le due tecniche vengono descritte e comparate in termini di ecenza e perturbazione del plasma. Vengono inoltre descritte le principali componenti dell'iniettore di pellet criogenici su cui ho lavorato e alcuni test svolti per ottimizzarne l'utilizzo in funzione degli esperimenti sul rifornimento di particelle e del normale utilizzo su RFX-mod.
Capitolo 6 è dedicato alle simulazioni del plasma di bordo
dell'esperimento JET, svolte con il codice di trasporto EDGE2D.
Viene presentato uno studio del range di validità del codice, un
confronto con le previsioni di un modello 0-dimensionale e lo studio dei diversi regimi che si possono ottenere nella regione del divertore al variare della densità e della temperatura nel plasma.
Capitolo 7 descrive B2, un codice di trasporto al bordo, e il codice di neutri EIRENE che sono stati utilizzati per simulare il plasma di bordo di FTU. Vengono introdotte brevemente le equazioni di Braginskii che descrivono il trasporto al bordo e le semplicazioni fatte nel codice per risolverle. Il capitolo si conclude con la descrizione di come si congurino vari equilibri magnetici e le condizioni al contorno del plasma.
Capitolo 8 presenta il lavoro svolto per preparare le simulazioni che descrivono il plasma di bordo di FTU. Vengono descritte le prime simulazioni fatte, il loro confronto con i risultati sperimentali e varie soluzioni per aumentare l'accordo tra i due.
Capitolo 9 conclude la tesi con la discussione dei maggiori risultati ottenuti e le prospettive future