A Single Gene Expression Set Derived from Artificial Intelligence Predicted the Prognosis of Several Lymphoma Subtypes; and High Immunohistochemical Expression of TNFAIP8 Associated with Poor Prognosis in Diffuse Large B-Cell Lymphoma

Abstract

OBJECTIVES: We have recently identified using multilayer perceptron analysis (artificial intelligence) a set of 25 genes with prognostic relevance in diffuse large B-cell lymphoma (DLBCL), but the importance of this set in other hematological neoplasia remains unknown. METHODS AND RESULTS: We tested this set of genes (i.e., ALDOB, ARHGAP19, ARMH3, ATF6B, CACNA1B, DIP2A, EMC9, ENO3, GGA3, KIF23, LPXN, MESD, METTL21A, POLR3H, RAB7A, RPS23, SERPINB8, SFTPC, SNN, SPACA9, SWSAP1, SZRD1, TNFAIP8, WDCP and ZSCAN12) in a large series of gene expression comprised of 2029 cases, selected from available databases, that included chronic lymphocytic leukemia (CLL, n = 308), mantle cell lymphoma (MCL, n = 92), follicular lymphoma (FL, n = 180), DLBCL (n = 741), multiple myeloma (MM, n = 559) and acute myeloid leukemia (AML, n = 149). Using a risk-score formula we could predict the overall survival of the patients: the hazard-ratio of high-risk versus low-risk groups for all the cases was 3.2 and per disease subtype were as follows: CLL (4.3), MCL (5.2), FL (3.0), DLBCL not otherwise specified (NOS) (4.5), multiple myeloma (MM) (5.3) and AML (3.7) (all p values 60 years, high serum levels of soluble IL2RA, a non-GCB phenotype (cell-of-origin Hans classifier), moderately higher MYC and Ki67 (proliferation index), and high infiltration of the immune microenvironment by CD163-positive tumor associated macrophages (CD163+TAMs). CONCLUSIONS: It is possible to predict the prognosis of several hematological neoplasia using a single gene-set derived from neural network analysis. High expression of TNFAIP8 is associated with poor prognosis of the patients in DLBCL

    Similar works