5G network deployment and the associated energy consumption in the UK: A complex systems’ exploration

Abstract

Investing in the communication infrastructure transition requires significant scientific consideration of challenges, prioritisation, risks and uncertainties. To address these challenges, a bottom-up approach was used to demonstrate the future of wireless network transmission and deployment. This study developed an agent-based model to explore the future deployment of non-standalone 5G networks, synthesizing multi-dimensional data visualization. In particular, this research took the UK as an example to investigate the spatiotemporal dynamic characteristics of 5G evolution, and further analysed the energy consumption and carbon footprint of 5G networks, as well as the consequent change in the operating expenses pattern. The simulation results show that 700 MHz and 26 GHz will play an important role in 5G deployment in the UK, which allow base stations to meet short-term and long-term data traffic demands respectively. Furthermore, due to the geopolitical restrictions and embargos, telecommunications may face additional costs of £0.63bn to £1.19bn when deploying 5G radio access networks. Network densification may cause some environmental and economic problems. Take a medium demand scenario as an example, it is found that the electricity consumed by the 5G radio access network will account for more than 2.1% of the total electricity generation, and indirectly lead to 990,404 tonnes carbon emissions in 2030

    Similar works