Random finite element method prediction and optimisation for open pit mine slope stability analysis

Abstract

Inherent soil variability can have significant effects on the stability of open-pit mine slopes. In practice, the spatial variability of materials is not commonly considered as a routine component of slope stability analysis. The process of quantifying spatially variable parameters, as well as the modelling of their behaviour is often a complex undertaking. Currently, there are no large-scale commercial software packages containing in-built methods for modelling spatial variability within the Finite Element environment. Furthermore, conventional Limit Equilibrium Methods (LEM) incorporating spatial variability are unable to consider the stress/strain characteristics of these materials. The following research seeks to accurately model the slope mechanics of spatially variable soils, adopting The Random Finite Element Method (RFEM) developed by Griffiths and Fenton (2004) to determine slope failure mechanisms and safety factors. Techniques are developed to produce a set of optimised Random Finite Element Method simulations using the Monte Carlo Method. Additionally, random field analysis techniques are investigated to compare and categorise soil parameter fluctuation, providing a direct relationship between random field properties and slope failure surfaces. Optimisation and analysis techniques are implemented to examine the effects of cross-sectional geometries and input parameter distributions on failure mechanisms, safety factors and probabilities of failure. Cross-sectional RFEM analysis is performed in the Finite Element Method (FEM) software package Abaqus, with the techniques of this research demonstrated for a large open-pit brown coal mine located in the state of Victoria, Australia. The outcome of this research is a comprehensive procedure for optimised RFEM simulation and analysis.Doctor of Philosoph

    Similar works