Enhanced heterogeneous activation of peroxymonosulfate by Ruddlesden-Popper-type La2CoO4+δ nanoparticles for bisphenol A degradation

Abstract

The scalable synthesis of stable catalysts for environmental remediation applications remains challenging. Nonetheless, metal leaching is a serious environmental issue hindering the practical application of transition-metal based catalysts including Co-based catalysts. Herein, for the first time, we describe a facile one-step and scalable spray-flame synthesis of high surface area La2CoO4+δ nanoparticles containing excess oxygen interstitials (+δ) and use them as a stable and efficient catalyst for activating peroxymonosulfate (PMS) towards the degradation of bisphenol A. Importantly, the La2CoO4+δ catalyst exhibits higher catalytic degradation of bisphenol A (95% in 20 min) and stability than LaCoO3–x nanoparticles (60%) in the peroxymonosulfate activation system. The high content of Co2+ in the structure showed a strong impact on the catalytic performance of the La2CoO4+δ + PMS system. Despite its high specific surface area, our results showed a very low amount of leached cobalt (less than 0.04 mg/L in 30 min), distinguishing it as a material with high chemical stability. According to the radical quenching experiments and the electron paramagnetic resonance technology, SO4[rad]–, [rad]OH, and 1O2 were generated and SO4[rad]– played a dominant role in bisphenol A degradation. Moreover, the La2CoO4+δ + PMS system maintained conspicuous catalytic performance for the degradation of other organic pollutants including methyl orange, rhodamine B, and methylene blue. Overall, our results showed that we developed a new synthesis method for stable La2CoO4+δ nanoparticles that can be used as a highly active heterogeneous catalyst for PMS-assisted oxidation of organic pollutants

    Similar works