Synthesizing VERDICT maps from standard DWI data using GANs

Abstract

VERDICT maps have shown promising results in clinical settings discriminating normal from malignant tissue and identifying specific Gleason grades non-invasively. However, the quantitative estimation of VERDICT maps requires a specific diffusion-weighed imaging (DWI) acquisition. In this study we investigate the feasibility of synthesizing VERDICT maps from standard DWI data from multi-parametric (mp)-MRI by employing conditional generative adversarial networks (GANs). We use data from 67 patients who underwent both standard DWI-MRI and VERDICT MRI and rely on correlation analysis and mean squared error to quantitatively evaluate the quality of the synthetic VERDICT maps. Quantitative results show that the mean values of tumour areas in the synthetic and the real VERDICT maps were strongly correlated while qualitative results indicate that our method can generate realistic VERDICT maps that could supplement mp-MRI assessment for better diagnosis

    Similar works