A multi-hop angular routing protocol for wireless sensor networks

Abstract

In this article, we propose two new routing protocols for wireless sensor networks. First one is AM-DisCNT (angular multi-hop distance-based clustering network transmission) protocol which uses circular deployment of sensors (nodes) for uniform energy consumption in the network. The protocol operates in such a way that nodes with maximum residual energy are selected as cluster heads for each round. Second one is iAM-DisCNT (improved AM-DisCNT) protocol which exploits both mobile and static base stations for throughput maximization. Besides the proposition of routing protocols, iAM-DisCNT is provided with three mathematical models: two linear-programming-based models for information flow maximization and packet drop rate minimization and one model for calculating energy consumption of nodes. Graphical analysis for linear-programming-based mathematical formulation is also part of this work. Simulation results show that AM-DisCNT has 32% and iAM-DisCNT has 48% improved stability period as compared to LEACH (low-energy adaptive clustering hierarchy) and DEEC (distributed energy-efficient clustering) routing protocols. Similarly, throughput of AM-DisCNT and iAM-DisCNT is improved by 16% and 80%, respectively, in comparison with the counterpart schemes. © The Author(s) 2016

    Similar works